66.) Ball, M. A. P.; Myers, P. J.; Ritch, G. D.; Bower, J. K.; Moore, C. E.; Szymczak, N. K.;* Zhang, S.* The Role of Electron Transfer in Copper‐Mediated C(Sp2 )−H Trifluoromethylation.
Angew. Chem. Int. Ed. 2024, doi.org/10.1002/anie.202420677 |
65.) Atkins, A. L.; Zeller, M.; Szymczak, N. K.*Tuning Secondary-Sphere Lewis Acidity via Late-Stage Modification of an Appended Borane.
Inorg. Chem. 2024, 63, 48, 22650–22655 |
64.) Andre, C. M.; Szymczak, N. K.* Synthesis of Heteroleptic Bis-Phosphine Bis-NHC Iron (0) Complexes: A Strategy to Enhance Small Molecule Activation.
Chem. Commun. 2024, 60, 14037–14040 |
63.) Norwine, E. E.; Kiernicki, J. J.; Zeller, M.; Szymczak, N.K.* Additive Effects in Metal/Lewis Acid Cooperativity Assessed in a Tetrahedral Copper Hydrazine Complex Featuring an Appended Borane.
Inorg. Chem. 2024, 63, 40, 18519–18523. |
62.) Song, H; Szymczak, N.K.* Lewis Acid-Tethered (cAAC)-Copper Complexes: Reactivity for Hydride Transfer and Catalytic CO2 Hydrogenation.
Angew. Chem. Int. Ed. 2024, 63, 43, e202411099. |
61.) Davies, A. M.; Greene, K. H.; Allen, A. R.; Farris, B. M.; Szymczak, N. K.*; Stephenson, C. R. J.* Organic Olefin Transpositions Facilitated by Ruthenium N,N,N-Pincer Complexes.
J. Org. Chem. 2024, 89 (13), 9647-9653. |
60.) Farris, B.M.; Davies, A.M.; Stephenson, C.R.J.*; Szymczak, N.K.* Ethanol Upgrading with N,N,N-Pincer-Based Ru Catalysts: Delineating Key Factors Governing Catalyst Evolution and Stability.
ACS Catal. 2024, 14, 11, 8456–8462 |
59.) Beagan, D. M.; Rivera, C.; Szymczak, N. K.* Appended Lewis Acids Enable Dioxygen Reactivity and Catalytic Oxidations with Ni(II). J. Am. Chem. Soc. 2024, 146, 18, 12375–12385 |
58.) Sarkar, W.; LaDuca, A.; Wilson, J. R.; Szymczak, N. K.* Iron-Catalyzed C-H Oxygenation Using Perchlorate Enabled by Secondary Sphere Hydrogen Bonds. J. Am. Chem. Soc. 2024, 146, 15, 10508–10516 ***Highlighted in ChemistryViews |
57.) Chakrabarti, K.; Wade Wolfe, M. M.; Guo, S.; Tucker, J. W.; Lee, J.; Szymczak, N. K.* A metal-free strategy to construct fluoroalkyl-olefin linkages using fluoroalkanes. Chem. Sci., 2024,15, 1752-1757 |
56.) Beagan, D. M.; Kiernicki, J. J.; Zeller, M.; Szymczak, N. K.* A Bidentate Ligand Featuring Ditopic Lewis Acids in the Second Sphere for Selective Substrate Capture and Activation. Angew. Chem. Int. Ed., 2023, e202218907 |
55.) Guo, S.; Sun, W.; Tucker, J. W.; Hesp, K. D.; Szymczak, N.K.* Preparation and Functionalization of Mono- and Polyfluoroepoxides via Fluoroalkylation of Carbonyl Electrophiles. Chem. Eur. J, 2022, 29, 10, e202203578 |
54.) Wade Wolfe, M. M.; Guo, S.; Yu, L. S.; Vogel, T. R.; Tucker, J. W.; Szymczak, N.K.* Nucleophilic strategies to construct -CF2- linkages using borazine-CF2Ar reagents. Chem. Commun., 2022, 58, 11705-11708 ***Invited manuscript for Boron Chemistry in the 21st Century: From Synthetic Curiosities to Functional Molecules |
53.) Wang, B.; Seo, C. S. G.; Zhang, C.; Chu, J;* Szymczak, N. K.* A Borane Lewis Acid in the Secondary Coordination Sphere of a Ni(II) Imido Imparts Distinct C–H Activation Selectivity. J. Am. Chem. Soc. 2022, 144, 34, 15793–15802 ***Featured in Chemical & Engineering News, August 26, 2022 |
52.) Norwine, E. E.; Kiernicki, J. J.; Zeller, M.; Szymczak, N. K.*
Distinct Reactivity Modes of a Copper Hydride Enabled
by an Intramolecular Lewis Acid.
J. Am. Chem. Soc. 2022, 144, 33, 15038–15046
51.) Davies, A. M.; Li, Z-Y.; Stephenson, C. R. J.;* Szymczak, N. K.*
Valorization of Ethanol: Ruthenium-Catalyzed Guerbet and
Sequential Functionalization Processes.
ACS Catalysis. 2022, 12, 6729-6736
50.) Nasrallah, D. J.; Zehnder, T. E.; Ludwig, J. R.; Steigerwald, D. C.; Kiernicki, J. J.; Szymczak, N. K.* Schindler, C. S.* Hydrazone and Oxime Olefination via Ruthenium Alkylidenes.
Angew. Chem. Int. Ed. 2022, e202112101
49.) Shanahan, J. P.; Moore, C. M.; Kampf, J.; Szymczak, N. K.; Modulation of H+/H− exchange in iridium-hydride 2-hydroxypyridine complexes by remote Lewis acids.
Chem. Commun., 2021, 57, 11705-11708
49.) Shanahan, J. P.; Moore, C. M.; Kampf, J.; Szymczak, N. K.; Modulation of H+/H− exchange in iridium-hydride 2-hydroxypyridine complexes by remote Lewis acids.
Chem. Commun., 2021, 57, 11705-11708
48.) Kiernicki, J. J.; Zeller, M.; Szymczak, N. K.; Requirements for Late-Stage Hydroboration of Pyridine N-Heterocyclic Carbene Iron(0) Complexes: The Role of Ancillary Ligands
Organometallics, 2021, 40, 15, 2658–2665
47.) Kiernicki, J. J.; Norwine, E. E.; Zeller, M.; Szymczak, N. K.; Substrate Specific Metal–Ligand Cooperative Binding: Considerations for Weak Intramolecular Lewis Acid/Base Pairs
Inorg. Chem., 2021, 60, 18, 13806–13810
46.) Taher, D.; Wilson, J. R.; Ritch, G. Zeller, M.; Szymczak, N. K.; Late-stage ligand functionalization via the Staudinger reaction using phosphine-appended 2,2′-bipyridine
Chem. Commun., 2021, 57, 5718-5721.
45.) Wilson, J. R.; Zeller, M.; Szymczak, N. K.; Hydrogen-bonded nickel(I) complexes
Chem. Commun., 2021, 57, 753-756
44.) Wade Wolfe, M. M.; Shanahan, J. P.; Kampf, J. W.; Szymczak, N. K.; Defluorinative Functionalization of Pd(II) Fluoroalkyl Complexes
J. Am. Chem. Soc. 2020, 142, 43, 18698.
43.) Kiernicki, J. J.; Norwine, E. E.; Lovasz, M. A.; Zeller, M.; Szymczak, N. K..; Mobility of Lewis acids within the secondary coordination sphere: toward a model for cooperative substrate binding
Chem. Commun. 2020, 56, 13105-13108.
42.) Shanahan, J. P.; Szymczak, N. K..; Lewis Acid Effects on Calculated Ligand Electronic Parameters
Organometallics. 2020, 39, 23, 4297-4306.
***Special issue: Organometallic Chemistry of the Main-Group Elements
41.) Kiernicki, J. J.; Zeller, M.; Szymczak, N. K..; Examining the Generality of Metal–Ligand Cooperativity Across a Series of First-Row Transition Metals: Capture, Bond Activation, and Stabilization
Inorg. Chem. 2020, 59, 13, 9279-9286.
40.) Shanahan, J. P.; Mullis, D. M.; Zeller, M.; Szymczak, N. K.; Reductively Stable Hydrogen-Bonding Ligands Featuring Appended CF2–H Units
J. Am. Chem. Soc. 2020, 142, 19, 8809-8817.
39.) Kiernicki, J. J.; Norwine, E. E.; Zeller, M.; Szymczak, N. K.; Tetrahedral iron featuring an appended Lewis acid: distinct pathways for the reduction of hydroxylamine and hydrazine
Chem. Commun. 2019, 55, 11896-11899.
38.) Shanahan, J. P.; Szymczak, N. K.; Hydrogen Bonding to a Dinitrogen Complex at Room Temperature: Impacts on N2Activation
J. Am. Chem. Soc. 2019, 141, 21, 8550-8556
37.) Hale, L. V. A.; Sikes, N. M.; Szymczak, N. K.; Reductive C−C Coupling from α,β‐Unsaturated Nitriles by Intercepting Keteniminates
Angew. Chem. Int. Ed 2019. 58, 8531-8535
36.) Kiernicki, J. J.; Shanahan, J. P.; Zeller, M.; Szymczak, N. K.; Tuning ligand field strength with pendent Lewis acids: access to high spin iron hydrides
Chem. Sci., 2019,10, 5539-5545.
35.) Geri, J. B.; Aguilera, E. Y.; Szymczak, N. K.; Difluoromethane as a precursor to difluoromethyl borates
Chem. Commun. 2019, 55, 5119-5122.
35.) Geri, J. B.; Aguilera, E. Y.; Szymczak, N. K.; Difluoromethane as a precursor to difluoromethyl borates
Chem. Commun. 2019, 55, 5119-5122.
34.) Kiernicki, J. J.; Zeller, M.; Szymczak, N. K.; Requirements for Lewis Acid-Mediated Capture and N–N Bond Cleavage of Hydrazine at Iron
Inorg. Chem. 2019, 58 (2) 1147–1154.
33.) Dahl, E. W.; Kiernicki, J. J.; Zeller, M.; Szymczak, N. K.; Hydrogen Bonds Dictate O2 Capture and Release within a Zinc Tripod
J. Am. Chem. Soc. 2018, 140 (32) 10075–10079.
Graduate and Postdoctoral Publications
17.) McCrory, C. C. L.; Szymczak, N. K.; Peters, J. C.; Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide.
Electrocatalysis 2016, 7, 87-96
16.) Bayram, E.; Linehan, J. C.; Fulton, J. L.; Szymczak, N. K.; Finke, R. G.; Determination of the Dominant Catalyst Derived from the Classic [RhCp*Cl2]2 Precatalyst System: Is it Single-Metal Rh1Cp*-Based, Subnanometer Rh4 Cluster-Based, or Rh(0)nNanoparticle-Based Cyclohexene Hydrogenation Catalysis at Room Temperature and Mild Pressures?
ACS Catal. 2015, 5, 3876-3886.
15.) Ercan, B.; Linehan, J.; Fulton, J.; Roberts, J.; Szymczak, N.; Smurthwaite, T.; Ozkar, S.; Balasubramanian, M.; Finke, R. Is It Homogeneous or Heterogeneous Catalysis Derivedfrom [RhCp*Cl2]2? In Operando-XAFS, Kinetic and Crucial Kinetic Poisoning Evidence for Subnanometer Rh4 Cluster-Based Benzene Hydrogenation Catalysis.
J. Am. Chem. Soc. 2011, 133, 18889-18902.
14.) Neiner, D.; Karkamamkar, A.; Bowden, M.; Choi, Y. J.; Luedtke, A.; Holladay, J.; Fisher, A.; Szymczak, N.; Autrey, T. Kinetic and Thermodynamic Investigation of Hydrogen Release from Ethane 1,2-Di-Amineborane.
Energy Environ. Sci. 2011, 4, 4187-4193.
13.) Szymczak, N. K.; Berben, L. A.; Peters, J. C. Redox-Rich Dicobalt Macrocycles as Templates for Multi-Electron Transformations.
Chem. Commun. 2009, 6729-6731.
12.) Szymczak, N. K.; Braden, D. A.; Crossland, J. L.; Turov, Y.; Zakharov, L. N.; Tyler, D. R. Aqueous Coordination Chemistry of H2. Why is Coordinated H2 Inert to Substitution by Water in trans-Ru(P2)2(H2)H+-type Complexes (P2 = a Chelating Phosphine)?
Inorg. Chem. 2009, 48, 2976-2984.
11.) Yelle, R. B.; Crossland, J. C.; Szymczak, N, K.; Tyler, D. R. Theoretical Studies of N2 Reduction to Ammonia in Fe(dmpe)2N2.
Inorg. Chem. 2009, 48, 861-871.
10.) Pons, V; Baker, R. T.; Szymczak, N. K.; Heldebrant, D. J.; Linehan, J. C.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Coordination of Aminoborane, NH2BH2, Dictates Selectivity and Extent of H2 Release in Metal-Catalysed Ammonia Borane Dehydrogenation.
Chem. Commum. 2008, 48, 6597-599.
9.) Shaw, W. J; Linehan, J. C.; Szymczak, N. K.; Heldebrant, D. J.; Yonker, C.; Baker, R. T.; Autrey, T. In Situ Multinuclear NMR Spectroscopic Studies of the Thermal Decomposition of Ammonia Borane in Solution.
Angew. Ch., Int. Ed. 2008, 120, 7603-7606.
8.) Szymczak, N. K.; Tyler, D. R. Aspects of Dihydrogen Coordination Chemistry Relevant to Reactivity in Aqueous Solution.
Coord. Chem. Rev. 2008, 252(1-2), 212-230.
7.) Fulton, J. L.; Linehan, J. C.; Autrey, T.; Balasubramanian, M.; T.;Chen, Y.; Szymczak, N. K.. When is a Nanoparticle a Cluster? An Operando EXAFS Study of Amine Borane Dehydrocoupling by Rh4-6 Clusters.
J. Am. Chem. Soc. 2007, 129, 11936-11949.
6.) Gilbertson, J. D.; Szymczak, N, K.; Crossland, J. C.; Miller, W. K.; Lyon, D. K.; Foxman, B. M.; Davis, J.; Tyler, D. R. Water-Soluble Transition Metal Phosphine Complexes: Investigation of the Aqueous Binding and Activation of H2 and N2 in trans-FeII(P2)2X2-type Complexes (P2 = a Chelating Phosphine).
Inorg. Chem. 2007, 46, 1205-1214.
5.) Szymczak, N. K.; Zakharov, L. N.; Tyler, D. R. Solution Chemistry of a Water-Soluble n2-H2 Complex: Evidence for H2 acting as a Hydrogen Bond Donor.
J. Am. Chem. Soc. 2006, 128, 15830-15835.
4.) Szymczak, N. K.; Oelkers, A. B.; Tyler, D. R. Detection of Hydrogen Bonding in Solution: A 2H Nuclear Magnetic Resonance Method Based on Rotational Motion of a Donor/Acceptor Complex.
Phys. Chem. Chem. Phys. 2006, 8, 4002-4008.
3.) Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. Reduction of N2 to Ammonia and Hydrazine Utilizing H2 as the Reductant.
J. Am. Chem. Soc. 2005, 127, 10184-10185.
2.) Szymczak, N. K.; Han, F.; Tyler, D. R. Arrested Chloride Abstraction from trans-RuCl2(DMeOPrPE)2 with TlPF6; Formation of a 1-D Coordination Polymer having Unusual Octahedral Coordination around Thallium(I).
J. Chem. Soc., Dalton Trans. 2004, 3941-3942.
1.) Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. H2 Activation in Aqueous Solution: Formation of trans-[Fe(DMeOPrPE)2H(H2)]+via the Heterolysis of H2 in Water.
Inorg. Chem. 2004, 43, 3341-3343.
17.) McCrory, C. C. L.; Szymczak, N. K.; Peters, J. C.; Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide.
Electrocatalysis 2016, 7, 87-96
16.) Bayram, E.; Linehan, J. C.; Fulton, J. L.; Szymczak, N. K.; Finke, R. G.; Determination of the Dominant Catalyst Derived from the Classic [RhCp*Cl2]2 Precatalyst System: Is it Single-Metal Rh1Cp*-Based, Subnanometer Rh4 Cluster-Based, or Rh(0)nNanoparticle-Based Cyclohexene Hydrogenation Catalysis at Room Temperature and Mild Pressures?
ACS Catal. 2015, 5, 3876-3886.
15.) Ercan, B.; Linehan, J.; Fulton, J.; Roberts, J.; Szymczak, N.; Smurthwaite, T.; Ozkar, S.; Balasubramanian, M.; Finke, R. Is It Homogeneous or Heterogeneous Catalysis Derivedfrom [RhCp*Cl2]2? In Operando-XAFS, Kinetic and Crucial Kinetic Poisoning Evidence for Subnanometer Rh4 Cluster-Based Benzene Hydrogenation Catalysis.
J. Am. Chem. Soc. 2011, 133, 18889-18902.
14.) Neiner, D.; Karkamamkar, A.; Bowden, M.; Choi, Y. J.; Luedtke, A.; Holladay, J.; Fisher, A.; Szymczak, N.; Autrey, T. Kinetic and Thermodynamic Investigation of Hydrogen Release from Ethane 1,2-Di-Amineborane.
Energy Environ. Sci. 2011, 4, 4187-4193.
13.) Szymczak, N. K.; Berben, L. A.; Peters, J. C. Redox-Rich Dicobalt Macrocycles as Templates for Multi-Electron Transformations.
Chem. Commun. 2009, 6729-6731.
12.) Szymczak, N. K.; Braden, D. A.; Crossland, J. L.; Turov, Y.; Zakharov, L. N.; Tyler, D. R. Aqueous Coordination Chemistry of H2. Why is Coordinated H2 Inert to Substitution by Water in trans-Ru(P2)2(H2)H+-type Complexes (P2 = a Chelating Phosphine)?
Inorg. Chem. 2009, 48, 2976-2984.
11.) Yelle, R. B.; Crossland, J. C.; Szymczak, N, K.; Tyler, D. R. Theoretical Studies of N2 Reduction to Ammonia in Fe(dmpe)2N2.
Inorg. Chem. 2009, 48, 861-871.
10.) Pons, V; Baker, R. T.; Szymczak, N. K.; Heldebrant, D. J.; Linehan, J. C.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Coordination of Aminoborane, NH2BH2, Dictates Selectivity and Extent of H2 Release in Metal-Catalysed Ammonia Borane Dehydrogenation.
Chem. Commum. 2008, 48, 6597-599.
9.) Shaw, W. J; Linehan, J. C.; Szymczak, N. K.; Heldebrant, D. J.; Yonker, C.; Baker, R. T.; Autrey, T. In Situ Multinuclear NMR Spectroscopic Studies of the Thermal Decomposition of Ammonia Borane in Solution.
Angew. Ch., Int. Ed. 2008, 120, 7603-7606.
8.) Szymczak, N. K.; Tyler, D. R. Aspects of Dihydrogen Coordination Chemistry Relevant to Reactivity in Aqueous Solution.
Coord. Chem. Rev. 2008, 252(1-2), 212-230.
7.) Fulton, J. L.; Linehan, J. C.; Autrey, T.; Balasubramanian, M.; T.;Chen, Y.; Szymczak, N. K.. When is a Nanoparticle a Cluster? An Operando EXAFS Study of Amine Borane Dehydrocoupling by Rh4-6 Clusters.
J. Am. Chem. Soc. 2007, 129, 11936-11949.
6.) Gilbertson, J. D.; Szymczak, N, K.; Crossland, J. C.; Miller, W. K.; Lyon, D. K.; Foxman, B. M.; Davis, J.; Tyler, D. R. Water-Soluble Transition Metal Phosphine Complexes: Investigation of the Aqueous Binding and Activation of H2 and N2 in trans-FeII(P2)2X2-type Complexes (P2 = a Chelating Phosphine).
Inorg. Chem. 2007, 46, 1205-1214.
5.) Szymczak, N. K.; Zakharov, L. N.; Tyler, D. R. Solution Chemistry of a Water-Soluble n2-H2 Complex: Evidence for H2 acting as a Hydrogen Bond Donor.
J. Am. Chem. Soc. 2006, 128, 15830-15835.
4.) Szymczak, N. K.; Oelkers, A. B.; Tyler, D. R. Detection of Hydrogen Bonding in Solution: A 2H Nuclear Magnetic Resonance Method Based on Rotational Motion of a Donor/Acceptor Complex.
Phys. Chem. Chem. Phys. 2006, 8, 4002-4008.
3.) Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. Reduction of N2 to Ammonia and Hydrazine Utilizing H2 as the Reductant.
J. Am. Chem. Soc. 2005, 127, 10184-10185.
2.) Szymczak, N. K.; Han, F.; Tyler, D. R. Arrested Chloride Abstraction from trans-RuCl2(DMeOPrPE)2 with TlPF6; Formation of a 1-D Coordination Polymer having Unusual Octahedral Coordination around Thallium(I).
J. Chem. Soc., Dalton Trans. 2004, 3941-3942.
1.) Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. H2 Activation in Aqueous Solution: Formation of trans-[Fe(DMeOPrPE)2H(H2)]+via the Heterolysis of H2 in Water.
Inorg. Chem. 2004, 43, 3341-3343.