SZYMCZAK GROUP
  • Home
  • Research
  • Publications
  • Members
  • Photos
    • Group Photos and Fun >
      • Group Fun
      • Group Trip Photos
      • Prior Group Pictures
      • Early Days of the Lab
    • Lab Facilities
  • Group News
  • Links

​PUBLICATIONS

Picture



​45.) Wilson, J. R.; Zeller, M.; Szymczak, N. K.; Hydrogen-bonded nickel(I) complexes
Chem. Commun., 2021, 57, 753-756

Picture


​44.) Wade Wolfe, M. M.; Shanahan, J. P.; Kampf, J. W.; Szymczak, N. K.; Defluorinative Functionalization of Pd(II) Fluoroalkyl Complexes
J. Am. Chem. Soc. 2020, 142, 43, 18698.

Picture


​43.)  Kiernicki, J. J.; Norwine, E. E.; Lovasz, M. A.; Zeller, M.; Szymczak, N. K..; Mobility of Lewis acids within the secondary coordination sphere: toward a model for cooperative substrate binding
Chem. Commun. 2020, 56, 13105-13108.

Picture



​42.)  Shanahan, J. P.; Szymczak, N. K..; Lewis Acid Effects on Calculated Ligand Electronic Parameters
Organometallics. 2020, 39, 23, 4297-4306.

Picture


​41.)  Kiernicki, J. J.; Zeller, M.; Szymczak, N. K..; Examining the Generality of Metal–Ligand Cooperativity Across a Series of First-Row Transition Metals: Capture, Bond Activation, and Stabilization
Inorg. Chem. 2020, 59, 13, 9279-9286.

Picture


40.) Shanahan, J. P.; Mullis, D. M.; Zeller, M.; Szymczak, N. K.; Reductively Stable Hydrogen-Bonding Ligands Featuring Appended CF2–H Units
J. Am. Chem. Soc. 2020, 142, 19, 8809-8817.

Picture


39.) Kiernicki, J. J.; Norwine, E. E.; Zeller, M.; Szymczak, N. K.; Tetrahedral iron featuring an appended Lewis acid: distinct pathways for the reduction of hydroxylamine and hydrazine
Chem. Commun. 2019, 55, 11896-11899.

Picture



​38.) Shanahan, J. P.; Szymczak, N. K.; Hydrogen Bonding to a Dinitrogen Complex at Room Temperature: Impacts on N2Activation
J. Am. Chem. Soc. 2019, 141, 21, 8550-8556

Picture


​37.) Hale, L. V. A.; Sikes, N. M.; Szymczak, N. K.; Reductive C−C Coupling from α,β‐Unsaturated Nitriles by Intercepting Keteniminates
Angew. Chem. Int. Ed 2019. DOI: 10.1002/anie.20190453

Picture


​36.) Kiernicki, J. J.; Shanahan, J. P.; Zeller, M.; Szymczak, N. K.; Tuning ligand field strength with pendent Lewis acids: access to high spin iron hydrides
Chem. Sci., 2019,10, 5539-5545.

Picture
​

​
35.) Geri, J. B.; Aguilera, E. Y.; Szymczak, N. K.; Difluoromethane as a precursor to difluoromethyl borates
Chem. Commun. 2019, 55, 5119-5122.

Picture



​34.) Kiernicki, J. J.; Zeller, M.; Szymczak, N. K.; Requirements for Lewis Acid-Mediated Capture and N–N Bond Cleavage of Hydrazine at Iron
Inorg. Chem. 2019, 58 (2) 1147–1154.

Picture



​33.) Dahl, E. W.; Kiernicki, J. J.; Zeller, M.; Szymczak, N. K.; Hydrogen Bonds Dictate O2 Capture and Release within a Zinc Tripod
J. Am. Chem. Soc. 2018, 140 (32) 10075–10079.

32.) Geri, J. B.; Wade Wolfe, M. M.; Szymczak, N. K.; The Difluoromethyl Group as a Masked Nucleophile: A Lewis Acid/Base Approach
J. Am. Chem. Soc. 2018, 140 (30) 9404–9408.
31.) Geri, J. B.; Ciatti, J. L.; Szymczak, N.K.; Charge effects regulate reversible CO2 reduction catalysis
Chem. Commun., 2018, 54, 7790-7793.

30.) Hale, L. V. A.; Szymczak, N. K.; Hydrogen Transfer Catalysis beyond the Primary Coordination Sphere
ACS Catal. 2018, 8, 6446–6461.
29.) Dahl, E. W.; Dong, H. T.; Szymczak, N. K.; Phenylamino derivatives of tris(2-pyridylmethyl)amine: hydrogen-bonded peroxodicopper complexes
Chem. Commun. 2018, 892-895.

28.) Kiernicki, J. J.; Zeller, M.; Szymczak, N. K.; Hydrazine Capture and N–N Bond Cleavage at Iron Enabled by Flexible Appended Lewis Acids
J. Am. Chem. Soc. 2017, 139, 18194–18197.

27.) Geri, J. B.; Wade Wolfe, M. M.; Szymczak, N. K.; Borazine-CF3- Adducts for Rapid, Room Temperature, and Broad Scope Trifluoromethylation
Angew. Chem. Int. Ed. 2018, 1381-1385.

***Featured in Chemical & Engineering News, 2018, 96, 6.
***Featured in Synform 2018/05, A77–A81.
​26.) Geri, J. B.; Szymczak, N. K.; Recyclable Trifluoromethylation Reagents from Fluoroform 
J. Am. Chem. Soc. 2017, 139, 9811-9814.

***Featured in JACS Spotlights 2017, 139, 10587.
25.) Geri, J. B.; Shanahan, J. P.; Szymczak, N. K.; Testing the Push–Pull Hypothesis: Lewis Acid Augmented N2 Activation at Iron 
J. Am. Chem. Soc. 2017, 139, 5952–5956

24.) Dahl, E. W.; Louis-Goff, T.; Szymczak, N. K.; Second sphere ligand modifications enable a recyclable catalyst for oxidant-free alcohol oxidation to carboxylates 
Chem. Commun. 2017, 53, 2287-2289.
23.) Hale, L. V. A.; Szymczak, N. K.; Stereoretentive Deuteration of α-Chiral Amines with D2O
J. Am. Chem. Soc. 2016, 138, 13489-13492.
22.) Tseng, K. T.; Kampf, J. W.; Szymczak, N. K.; Modular Attachment of Appended Boron Lewis Acids to a Ruthenium Pincer Catalyst: Metal–Ligand Cooperativity Enables Selective Alkyne Hydrogenation
J. Am. Chem. Soc. 2016, 138, 10378–10381.

Correction: DOI: 10.1021/jacs.7b09662 ​
21.) Hale, L. V. A.; Malakar, T.; Tseng, K. T.; Zimmerman, P. M.; Paul, A.; Szymczak, N. K.; The Mechanism of Acceptorless Amine Double Dehydrogenation by N,N,N-Amide Ruthenium(II) Hydrides: A Combined Experimental and Computational Study
ACS Catal. 2016, 6, 4799-4813.
20.) Moore, C. M.; Bark, B. Szymczak, N. K.; Simple Ligand Modifications with Pendent OH Groups Dramatically Impact the Activity and Selectivity of Ruthenium Catalysts for Transfer Hydrogenation: The Importance of Alkali Metals. 
ACS Catal. 2016, 6, 3, 1981-1990

19.) Dahl, E. W.; Szymczak, N. K.; Hydrogen Bonds Dictate the Coordination Geometry of Copper: Characterization of a Square-Planar Copper(I) Complex. 
Angew. Chem. Int. Ed. 2016, 55, 3101 –3105.
18.) Tseng, K. T.; Lin, S.; Kampf, J. W.; Szymczak, N. K.; Upgrading Ethanol to 1-Butanol with a Homogeneous Air-Stable Ruthenium Catalyst. 
Chem. Commun. 2016, 52, 2901-2904. 

***Featured in Chemistry World January 13, 2016
17.) Geri, J. B.; Szymczak, N. K.; A Proton-Switchable Bifunctional Ruthenium Complex That Catalyzes Nitrile Hydroboration. 
J. Am. Chem. Soc. 2015, 137, 12808-12814. 
​
16.) Carter, T. J.; Heiden, Z. M.; Szymczak, N. K.; Discovery of Low Energy Pathways to Metal Mediated B=N Bond Reduction Guided by Computation and Experiment. 
Chem. Sci. 2015, 6, 7258-7266.

15.) Tseng, K. T.; Kampf, J. W.; Szymczak, N. K.; Mechanism of N,N,N,-Amide Ruthenium(II) Hydride Mediated Acceptorless Alcohol Dehydrogenation: Inner-Sphere b-H Elimination versus Outer-Sphere Bufunctional Metal-Ligand Cooperativity. 
ACS Catal. 2015, 5, 5468-5485.

14.) Moore, C. M.; Szymczak, N. K.; Nitrite reduction by copper through ligand-mediated proton and electron transfer. 
Chem. Sci. 2015, 6, 3373-3377. 
​
13.) Moore, C. M.; Dahl, E. W.; Szymczak, N. K.; Beyond H2: exploiting 2-hydroxypyridine as a design element from [Fe]-hydrogenase for energy-relevant catalysis. 
Current Opinion in Chemical Biology 2015, 25, 9-17.

12.) Tseng, K. T.; Kampf, J. W.; Szymczak, N. K.; Regulation of Iron-Catalyzed Olefin Hydroboration by Ligand Modifications at a Remote Site. 
ACS Catal. 2015, 5 (1), 411-415. 
​
11.) Moore, C. M.; Szymczak, N. K.; Redox-induced fluoride ligand dissociation stabilized by intramolecular hydrogen bonding. 
Chem. Commun. 2015, 51, 5490-5492. 
​
10.) Tseng, K. T.; Szymczak, N. K.; Dehydrogenative Oxidation of Primary Amines to Nitriles. 
Synlett 2014, 25, 2385-2389

9.) Moore, C. M.; Szymczak, N. K. Appended Functionality in Pincer Ligands. 
In Pincer and Pincer-Type Complexes: Application in Organic Synthesis and Catalysis. Szabó, K. J.; Wendt, O. F., Eds.; Wiley-VCH: Weinheim, Germany, 2014; pp 117-147

8.) Carter, T. J.; Wang, J. Y.; Szymczak, N. K.; Manganese-Mediated Hydride Delivery to a Borazine by Stepwise Reduction and Protonation. 
Organometallics 2014, 33 (7), 1540–1543.
7.) Moore, C. M.; Quist, D. A.; Kampf, J. W.; Szymczak, N. K.; A 3-Fold-Symmetric Ligand Based on 2-Hydroxypyridine: Regulation of Ligand Binding by Hydrogen Bonding. 
Inorg. Chem. 2014, 57 (3), 3278–3280

6.) Tseng, K. T.; Rizzi A. M.; Szymczak, N. K.; Oxidant-Free Conversion of Primary Amines to Nitriles. 
J. Am. Chem. Soc. 2013, 135, 16352-16355.
5.) Tseng, K. T.; Kampf, J. W.; Szymczak, N. K.; Base-Free, Acceptorless, and Chemoselective Alcohol Dehydrogenation Catalyzed by an Amide-Derived NNN-Ruthenium(II) Hydride Complex. 
Organometallics 2013, 32 (7), 2046–2049.

***Top 10 Most Read Articles: April-June 2013
​4.) Tutusaus-Santandreu, O.; Ni, C.; Szymczak, N. K.; A Transition Metal Lewis Acid/Base Triad System for Cooperative Substrate Binding. 
J. Am. Chem. Soc. 2013, 135 (9), 3403–3406.

***Featured in Chemical & Engineering News, 2013, 91, 29.
3.) Moore, C. M.; Szymczak, N. K.; 6,6’-Dihydroxy terpyridine: A proton-responsive bifunctional ligand and its application in catalytic transfer hydrogenation of ketones. 
Chem. Commun. 2013, 49 (4), 400-402
.
2.) Carter, T. J.; Szymczak, N. K.; Reduction of Borazines Mediated by Low-Valent Chromium Species. 
Angew. Chem. Int. Ed. 2012, 51, 13168-13172.
***Featured in Advances in Engineering, April 2013.
1.) Moore, C. M.; Szymczak, N. K.; A tris(2-quinolylmethyl)amine scaffold that promotes hydrogen bonding within the secondary coordination sphere. 
Dalton Trans. 2012, 41, 7886-7889

***Invited contribution for “New Talent: The Americas.”​
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture
Picture

Graduate and Postdoctoral Publications
17.) McCrory, C. C. L.; Szymczak, N. K.; Peters, J. C.; Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide. 
Electrocatalysis 2016, 7, 87-96

​16.) Bayram, E.; Linehan, J. C.; Fulton, J. L.; Szymczak, N. K.; Finke, R. G.; Determination of the Dominant Catalyst Derived from the Classic [RhCp*Cl2]2 Precatalyst System: Is it Single-Metal Rh1Cp*-Based, Subnanometer Rh4 Cluster-Based, or Rh(0)nNanoparticle-Based Cyclohexene Hydrogenation Catalysis at Room Temperature and Mild Pressures? 
ACS Catal. 2015, 5, 3876-3886.


15.) Ercan, B.; Linehan, J.; Fulton, J.; Roberts, J.; Szymczak, N.; Smurthwaite, T.; Ozkar, S.; Balasubramanian, M.; Finke, R. Is It Homogeneous or Heterogeneous Catalysis Derivedfrom [RhCp*Cl2]2? In Operando-XAFS, Kinetic and Crucial Kinetic Poisoning Evidence for Subnanometer Rh4 Cluster-Based Benzene Hydrogenation Catalysis. 
J. Am. Chem. Soc. 2011, 133, 18889-18902.

14.) Neiner, D.; Karkamamkar, A.; Bowden, M.; Choi, Y. J.; Luedtke, A.; Holladay, J.; Fisher, A.; Szymczak, N.; Autrey, T. Kinetic and Thermodynamic Investigation of Hydrogen Release from Ethane 1,2-Di-Amineborane. 
Energy Environ. Sci. 2011, 4, 4187-4193.


13.) Szymczak, N. K.; Berben, L. A.; Peters, J. C. Redox-Rich Dicobalt Macrocycles as Templates for Multi-Electron Transformations. 
Chem. Commun. 2009, 6729-6731.


12.) Szymczak, N. K.; Braden, D. A.; Crossland, J. L.; Turov, Y.; Zakharov, L. N.; Tyler, D. R. Aqueous Coordination Chemistry of H2. Why is Coordinated H2 Inert to Substitution by Water in trans-Ru(P2)2(H2)H+-type Complexes (P2 = a Chelating Phosphine)? 
Inorg. Chem. 2009, 48, 2976-2984.


11.) Yelle, R. B.; Crossland, J. C.; Szymczak, N, K.; Tyler, D. R. Theoretical Studies of N2 Reduction to Ammonia in Fe(dmpe)2N2. 
Inorg. Chem. 2009, 48, 861-871.


10.) Pons, V; Baker, R. T.; Szymczak, N. K.; Heldebrant, D. J.; Linehan, J. C.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Coordination of Aminoborane, NH2BH2, Dictates Selectivity and Extent of H2 Release in Metal-Catalysed Ammonia Borane Dehydrogenation. 
Chem. Commum. 2008, 48, 6597-599.

9.) Shaw, W. J; Linehan, J. C.; Szymczak, N. K.; Heldebrant, D. J.; Yonker, C.; Baker, R. T.; Autrey, T. In Situ Multinuclear NMR Spectroscopic Studies of the Thermal Decomposition of Ammonia Borane in Solution. 
Angew. Ch., Int. Ed. 2008, 120, 7603-7606.


8.) Szymczak, N. K.; Tyler, D. R. Aspects of Dihydrogen Coordination Chemistry Relevant to Reactivity in Aqueous Solution. 
Coord. Chem. Rev. 2008, 252(1-2), 212-230.


7.) Fulton, J. L.; Linehan, J. C.; Autrey, T.; Balasubramanian, M.; T.;Chen, Y.; Szymczak, N. K.. When is a Nanoparticle a Cluster? An Operando EXAFS Study of Amine Borane Dehydrocoupling by Rh4-6 Clusters. 
J. Am. Chem. Soc. 2007, 129, 11936-11949.


6.) Gilbertson, J. D.; Szymczak, N, K.; Crossland, J. C.; Miller, W. K.; Lyon, D. K.; Foxman, B. M.; Davis, J.; Tyler, D. R. Water-Soluble Transition Metal Phosphine Complexes: Investigation of the Aqueous Binding and Activation of H2 and N2 in trans-FeII(P2)2X2-type Complexes (P2 = a Chelating Phosphine). 
Inorg. Chem. 2007, 46, 1205-1214.


5.) Szymczak, N. K.; Zakharov, L. N.; Tyler, D. R. Solution Chemistry of a Water-Soluble n2-H2 Complex: Evidence for H2 acting as a Hydrogen Bond Donor. 
J. Am. Chem. Soc. 2006, 128, 15830-15835.


4.) Szymczak, N. K.; Oelkers, A. B.; Tyler, D. R. Detection of Hydrogen Bonding in Solution: A 2H Nuclear Magnetic Resonance Method Based on Rotational Motion of a Donor/Acceptor Complex. 
Phys. Chem. Chem. Phys. 2006, 8, 4002-4008.


3.) Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. Reduction of N2 to Ammonia and Hydrazine Utilizing H2 as the Reductant. 
J. Am. Chem. Soc. 2005, 127, 10184-10185.


2.) Szymczak, N. K.; Han, F.; Tyler, D. R. Arrested Chloride Abstraction from trans-RuCl2(DMeOPrPE)2 with TlPF6; Formation of a 1-D Coordination Polymer having Unusual Octahedral Coordination around Thallium(I). 
J. Chem. Soc., Dalton Trans. 2004, 3941-3942.


1.) Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. H2 Activation in Aqueous Solution: Formation of trans-[Fe(DMeOPrPE)2H(H2)]+via the Heterolysis of H2 in Water. 
Inorg. Chem. 2004, 43, 3341-3343. 
FOLLOW US ON TWITTER
Proudly powered by Weebly
  • Home
  • Research
  • Publications
  • Members
  • Photos
    • Group Photos and Fun >
      • Group Fun
      • Group Trip Photos
      • Prior Group Pictures
      • Early Days of the Lab
    • Lab Facilities
  • Group News
  • Links